Monte Carlo‐based lung cancer treatment planning incorporating PET‐defined target volumes
نویسندگان
چکیده
Despite the well-known benefits of positron emission tomography (PET) imaging in lung cancer diagnosis and staging, the poor spatial resolution of PET has limited its use in radiotherapy planning. Methods used for segmenting tumor from normal tissue, such as threshold boundaries using a fraction of the standardized uptake value (SUV), are subject to uncertainties. The issue of respiratory motion in the thorax confounds the problem of accurate target definition. In this work, we evaluate how changing the PET-defined target volume by varying the threshold value in the segmentation process impacts target and normal lung tissue doses. For each of eight lung cancer patients we retrospectively generated multiple PET-target volumes; each target volume corresponds to those voxels with intensities above a given threshold level, defined by a percentage of the maximum voxel intensity. PET-defined targets were compared to those from CT; CT targets comprise a composite volume generated from breath-hold inhale and exhale datasets; the CT dataset therefore also includes the extents of tumor motion. Treatment plans using Monte Carlo dose calculation were generated for all targets; the dose uniformity was approximately 100+/-5% within the internal target volume (ITV) (formed by a uniform 8-mm expansion of the composite gross target volume (GTV)). In all cases differences were observed in the generalized equivalent uniform doses (gEUDs) to the targets and in the mean lung doses (MLDs) and normal tissue complication probabilities (NTCPs) to the normal lung tissues. The magnitudes of the dose differences were found to depend on the target volume, location, and amount of irradiated normal lung tissue, and in many instances were clinically meaningful (greater than a single 2 Gy fraction). For those patients studied, results indicate that accurate dosimetry using PET volumes is highly dependent on accurate target segmentation. Further study with correlation to clinical outcome will be helpful in determining how to apply these various PET and CT volumes in treatment planning, to potentially improve local tumor control and reduce normal tissue toxicities.
منابع مشابه
Comparison of PET/CT and CT-based tumor delineation and its effects on the radiation treatment planning for non-small cell lung cancer
Introduction: Tumor volume delineation is the most important step in the radiation treatment planning. In this study the impact of PET/CT data on the tumor delineation precision of non-small cell lung cancer (NSCLC) was investigated. Methods: PET/CT images of 20 patients with primary NSCLC were obtained and imported to the treatment planning system for im...
متن کاملEvaluating Performance of Algorithms in Lung IMRT: A Comparison of Monte Carlo, Pencil Beam, Superposition, Fast Superposition and Convolution Algorithms
Background: Inclusion of inhomogeneity corrections in intensity modulated small fields always makes conformal irradiation of lung tumor very complicated in accurate dose delivery.Objective: In the present study, the performance of five algorithms via Monte Carlo, Pencil Beam, Convolution, Fast Superposition and Superposition were evaluated in lung cancer Intensity Modulated Radiotherapy plannin...
متن کاملDose Calculations for Lung Inhomogeneity in High-Energy Photon Beams and Small Beamlets: A Comparison between XiO and TiGRT Treatment Planning Systems and MCNPX Monte Carlo Code
Introduction Radiotherapy with small fields is used widely in newly developed techniques. Additionally, dose calculation accuracy of treatment planning systems in small fields plays a crucial role in treatment outcome. In the present study, dose calculation accuracy of two commercial treatment planning systems was evaluated against Monte Carlo method. Materials and Methods Siemens Once or linea...
متن کاملEvaluation of Lung Dose in Esophageal Cancer Radiotherapy Using Monte Carlo Simulation
Background and purpose: Radiation therapy make an important contribution in the control and treatment of cancers. Lungs are the main organs at risk in esophageal cancer radiotherapy. Difference between the dose distribution due to the treatment planning system (TPS) and the patient's body dose is dependent on the calculation of the treatment planning system algorithm, which is more pronounced i...
متن کاملA Prospective Study Comparing Functional Imaging (18F-FDG PET) Versus Anatomical Imaging (Contrast Enhanced CT) in Dosimetric Planning for Non-small Cell Lung Cancer.
Objective(s): 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET-CT) is a well-used and established technique for lung cancer staging. Radiation therapy requires accurate target volume delineation, which is difficult in most cases due to coexisting atelectasis. The present study was performed to compare the 18F-FDG PET-CT with contrast enhanced computed tomogr...
متن کامل